| [1] | Abgrall R. 1994.On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys., 114: 45-58 | 
		
				| [2] | Aftosmis M, Gaitonde D, Tavares T S. 1995. Behavior of linear reconstruction techniques on unstructured meshes. AIAA J., 33 (11): 2038-2049 | 
		
				| [3] | Anderson W K. 1994. A grid generation and flow solution method for the Euler equations on unstructured grids. J. Comput. Phys., 110: 23-38 | 
		
				| [4] | Argyris J, St. Doltsinis I, Friz H. 1989. Hermes shuttle: Exploration of reentry aerodynamics. Computer Meth. Appli. Mech. Eng., 73: 1-51 | 
		
				| [5] | Argyris J, St. Doltsinis I, Friz H. 1990. Studies on computational reentry aerodynamics. Computer Meth. Appli. Mech. Eng., 81: 257-289 | 
		
				| [6] | Arminjon P. 1993. Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids. J. Comput. Phys., 106: 176-198 | 
		
				| [7] | Baker T J. 2005. Mesh generation: Art or science? Prog. Aerospace Sci., 41: 29-63 | 
		
				| [8] | Balan A, May G, Schoberl J. 2012. A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements, J. Comput. Phys., 231: 2359-2375 | 
		
				| [9] | Barth T J, Jespersen D C. 1989. The design and application of upwind schemes on unstructured meshes. AIAA Paper 89-0366 | 
		
				| [10] | Barth T J, Frederickson P O. 1990. High-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90-0013 | 
		
				| [11] | Bassi F, Rebay S. 1994. Accurate 2D computations by means of a high order discontinuous finite element method. In XIV International Conference on Numerical Methods in Fluid Dynamics; Lecture Notes in Physics, 453: 234-240, Springer, Berlin. | 
		
				| [12] | Bassi F, Rebay S. 1997a. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131 (1): 267-279 | 
		
				| [13] | Bassi F, Rebay S. 1997b. High order accurate discontinuous finite element solution of 2D Euler equations. J. Comput. Phys., 138: 251-285 | 
		
				| [14] | Bassi F, Rebay S. 2002. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids, 40 (1): 197-207 | 
		
				| [15] | Bassi F, Crivellini A, Rebay S, et al. 2005. Discontinuous Galerkin solutions of the Reynolds-averaged Navier-Stokes and k-w turbulence model equations. Computers & Fluids, 34 (4-5): 507-540 | 
		
				| [16] | Biswas R, Devine K D, Flaherty J E. 1994. Parallel, adaptive finite element methods for conservation laws. Appli. Numer. Math., 14: 255-283 | 
		
				| [17] | NASA Langley. 2012. CFD resources at NASA Langley: Computational Fluid Dynamics, http://aaac.larc.nasa.gov/tsab/cfdlarc/ | 
		
				| [18] | 陈坚强. 1995. 超声速燃烧流场及旋涡流动的数值模拟. [博士论文]. 中国空气动力研究与发展中心. (Chen J Q. 1995. The numerical simulation of supersonic combustion flow field and vortex flow. [PhD Dissertation]. CARDC (in Chinese)) | 
		
				| [19] | Chen Q Y. 2006a. Partitions of a simplex leading to accurate spectral (finite) volume reconstruction. SIAM J. Sci. Comput., 27 (4): 1458-1470 | 
		
				| [20] | Chen Q Y. 2006b. Partitions for spectral finite volume reconstruction in the tetrahedron. SIAM J. Sci. Comput., 29 (3): 299-319 | 
		
				| [21] | Cockburn B, Lin S Y, Shu C W. 1989. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys., 84:90-113 | 
		
				| [22] | Cockburn B, Shu C W. 1989. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comp., 52: 411-435 | 
		
				| [23] | Cockburn B, Hou S, Shu C W. 1990. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp., 54: 545-581 | 
		
				| [24] | Cockburn B, Shu C W. 1994. Nonlinearly stable compact schemes for shock calculations. SIAM J. Numer. Anal., 31 (3): 607-630 | 
		
				| [25] | Cockburn B, Shu C W. 1998. The local discontinuous Galerkin method for time-dependent convection diffusion system. SIAM J. Numer. Anal., 35: 2440-2463% | 
		
				| [26] | Cockburn B, Karniadakis G E, Shu C W. 1999. Discontinuous Galerkin methods. Springer, Berlin. | 
		
				| [27] | Collis S S. 2002. Discontinuous Galerkin methods for turbulence simulation. Center for Turbulence Research Proceedings of the Summer Program, pp. 115-167 | 
		
				| [28] | Cook A W, Cabot W H. 2004. A high-wave number viscosity for high-resolution numerical method. J. Comput. Phys., 195 (2): 594-601 | 
		
				| [29] | Courant R, Friedrichs K O, Lewy H. 1967. On the partial difference equations of mathematical physics. IBM J., March, 11 (2): 215-234 | 
		
				| [30] | 蔡庆东, 温功碧. 1994. 二维可压无粘流的自适应流量修正有限元解, 航空学报, 15 (11): 1291-1297. (Cai Q D, Wen G B. 1994. Finite element flux corrected transport (FEM-FCT) solution of two-dimensional Euler equation on adaptive triangular mesh. Acta Aeronautica & Astronautica Sinica, 15 (11): 1291-1297. (in Chinese)) | 
		
				| [31] | 蔡庆东. 1996. 新型NND有限元方法和三维FCT有限元技术的研究. [博士论文]. 北京: 北京大学 (Cai Q D. 1996. The study of a new NND finite element scheme and three dimensional FCT finite element technology. [PhD Dissertation]. Beijing: Peking University. (in Chinese)) | 
		
				| [32] | Deng X G, Maekawa H. 1997. Compact high-order accurate nonlinear schemes. J. Comput. Phys., 130: 77-91 | 
		
				| [33] | Deng X G, Zhang H X. 2000. Developing high-order accurate nonlinear schemes. J. Comput. Phys., 165 (1): 22-44 | 
		
				| [34] | Deng X G. 2001. High-order accurate dissipative weighted compact nonlinear schemes. Science in China, Series A, 31 (12): 1104-1117 | 
		
				| [35] | Deng X G, Mao M L, Tu G H, et al. 2010. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions. AIAA J., 48 (12): 2840-2851 | 
		
				| [36] | Deng X G, Mao M L, Tu G H, et al. 2011. Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys., 230: 1100-1115 | 
		
				| [37] | Deng X G, Min Y B, Mao M L, et al. 2013. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys., 239: 90-111 | 
		
				| [38] | Desideri J A, Dervieux A. 1988. Compressible flow solvers using unstructured grids. VKI Lecture Series, 1988-05, VAN Karman Inst.; for Fluid Dynamics, Rhode St. Genese, Belgium pp. 1-115 | 
		
				| [39] | Donea J. 1984. A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Eng., 20:101-120 | 
		
				| [40] | Donea J, Quartapelle L, Selmin V. 1987. An analysis of time discretization in the finite element solution of hyperbolic problems. J. Comput. Phys.,70: 463-499 | 
		
				| [41] | 段占元, 童秉纲, 姜贵庆. 1997. 有限差分-有限元混合方法及其在气动热计算中的应用. 空气动力学学报, 15 (4): 5-10 (Duan Z Y, Tong B G, Jiang G Q. 1997. A high resolution hybrid finite difference-finite element method and its applications to aerodynamic heating calculation. Acta Aerodynamica Sinica, 15 (4): 5-10. (in Chinese)) | 
		
				| [42] | Dumbser M, Balsara D S, Toro E F. 2008. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys., 227: 8209-8253 | 
		
				| [43] | Dumbser M, Zanotti O. 2009. Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys., 228: 6991-7006 | 
		
				| [44] | Dumbser M. 2010. Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Computers and Fluids, 39: 60-76% | 
		
				| [45] | Durlofsky L J, Enquist B, Osher S. 1992. Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys., 98: 64 | 
		
				| [46] | Ekaterinaris J A. 2005. High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerospace Sci., 41: 192-300 | 
		
				| [47] | 冯康. 1965. 基于变分原理的差分格式. 应用数学与计算科学, 2 (4): 237-261. (Feng K. 1965. The finite difference scheme based on variational principle. Commun. appli. Math. Comput., 2 (4): 237-261 (in Chinese)) | 
		
				| [48] | Friedrich O. 1998. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys., 144: 194-212% | 
		
				| [49] | Frink N T. 1994. Recent progress toward a three dimensional unstructured Navier-Stokes flow solver. AIAA Paper 94-0061 | 
		
				| [50] | Fu D X, Ma Y W. 1997. A high-order accurate difference scheme for complex flow fields. J. Comput. Phys., 134: 1-15 | 
		
				| [51] | Gao H Y, Wang Z J, Liu Y. 2010. A study of curved boundary representations for 2D high order Euler solvers. SIAM J. Sci. Comput., 44: 323-336 | 
		
				| [52] | Harris R, Wang Z J, Liu Y. 2007. Efficient implementation of high-order spectral volume method for multidimensional conservation laws on unstructured grids. AIAA Paper 2007-912 | 
		
				| [53] | Harten A. 1983. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49: 357-393 | 
		
				| [54] | Harten A., Lax P D, van Leer B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25: 35-61 | 
		
				| [55] | Harten A, Engquist B, Osher S, et al. 1986. Some results on uniformly high order accurate essentially non-oscillatory schemes. Appli. Numer. Math., 2: 347-377 | 
		
				| [56] | Harten A, Engquist B, Osher S, et al. 1987. Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys., 71:231-303 | 
		
				| [57] | Hassan O, Morgan K, Peraire J. 1990. An implicit finite element method for high speed flows. AIAA Paper 90-0402% | 
		
				| [58] | He L X, Zhang L P, Zhang H X. 2006. A finite element/finite volume mixed solver on hybrid grids. In: Proc. of The Fourth International Conference on Computational Fluid Dynamics, Ghent, Belgium | 
		
				| [59] | 贺立新, 张来平, 张涵信. 2007. 间断Galerkin有限元和有限体积混合计算方法研究. 力学学报, 39 (1): 15-21 (He L X, Zhang L P, Zhang H X. 2007. A finite element/finite volume mixed solver on hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 39 (1): 15-21 (in Chinese)) | 
		
				| [60] | 贺国宏. 1994. 三阶ENN格式及其在高超声速粘性复杂流场求解中的应用. [博士论文]. 中国空气动力研究与发展中心 (He G H. 1994. The third-order ENN scheme and its application in hypersonic viscous complex flow field simulations. [PhD Dissertation]. CARDC. (in Chinese)) | 
		
				| [61] | Heinrich J C. 1977. An upwind finite element schemes for two-dimensional convective transport equations. Int. J. Numer. Meth. .Eng., 11:131-143 | 
		
				| [62] | Hoffmann M, Munz C D, Wang Z J. 2012. Efficient Implementation of the CPR Formulation for the Navier-Stokes Equations on GPUs. In: Proceedings of the 7th International Conference on Computational Fluid Dynamics, ICCFD7-2603. | 
		
				| [63] | Hu C, Shu C W. 1999. Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys., 150: 97-127 | 
		
				| [64] | Hughes T J R, Brooks A. 1979. A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows, ASME, New York. | 
		
				| [65] | Hughes T J R, Mallet M. 1986. A new finite element formulation for CFD IV: A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng., 58 (3): 329-356% | 
		
				| [66] | Hughes T J R. 1987. Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluid, 7:1261-1275 | 
		
				| [67] | Hughes T J R, Franca L P, Hulbert G M. 1989. A new finite element formulation for computational fluid dynamics VIII: The Galerkin least squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng., 73: 173-89 | 
		
				| [68] | Huynh HT. 2007. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007-4079 | 
		
				| [69] | Huynh HT. 2009. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009-403 | 
		
				| [70] | Huynh HT. 2011. High-order methods by correction procedures using reconstructions. In: Wang Z J, eds. Adaptive High-order Methods in Computational Fluid Dynamics, World Scientific, Singapore, pp. 391-422 | 
		
				| [71] | 黄兆林, 李宏伟, 毛国良. 1994. 再入飞行器高超声速绕流的一步和二步有限元计算. 空气动力学学报, 12 (2): 213-218 (Huang Z L, Li H W, Mao G L. 1994. One step and two step finite element computations for the hypersonic flow past a re-entry vehicle. Acta Aerodynamica Sinica, 12 (2): 213-218. (in Chinese)) | 
		
				| [72] | Jaffre J, Johnson C, Szepessy A. 1995. Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Meth. Appli. Sci., 5: 367-386 | 
		
				| [73] | Jameson A, Schmidt W, Turkle E. 1981. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259 | 
		
				| [74] | Jiang B N, Povinelli L A. 1990. Least-square finite element method for fluid dynamics. Computer Meth. Appli. Mecha. Eng., 81:13-37 | 
		
				| [75] | Jiang G, Shu C W. 1996. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126 (1): 202-228 | 
		
				| [76] | Kawai S, Lele S K. 2008. Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J. Comput. Phys., 227: 9498-9526 | 
		
				| [77] | Kim K, Hong L, Joon H, et al. 1997. An improvement of AUSM schemes by introducing the pressure-based weight functions. Computers & Fluids, 26 (5): 505-524 | 
		
				| [78] | Klaij C M, Raalte M H, Ven H, et al.. 2007. h-multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys., 227: 1024-1045 | 
		
				| [79] | Kopriva D A. 1998. A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations. J. Comput. Phys.,143:125-148 | 
		
				| [80] | Krivodonova L, Xin J, Remacle J F, et al. 2004. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appli. Numer. Math., 48: 323-338% | 
		
				| [81] | Krivodonova L, Berger M. 2006. High-order accurate implementation of solid wall boundary condition in curved geometries. J. Comput. Phys., 211: 492-512 | 
		
				| [82] | Krivodonova L. 2007. Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys., 226: 879-896 | 
		
				| [83] | Lele S K. 1992. Compact finite difference scheme with spectral-like resolution. J. Comput. Phys., 103 (1): 16-42 | 
		
				| [84] | Liou M S. 2000. Mass flux schemes and connection to shock instability. J. Comput. Phys., 160: 623-648 | 
		
				| [85] | Li Q, Guo Q L, Sun D, et al. 2012a. On the bandwidth optimization and improvement of the nonlinear procedures of WENO-type schemes. In: Proc. of the Ninth Asian CFD Conferences, Nanjing. | 
		
				| [86] | Li Q, Sun D, Zhang H X. 2012. Investigations on massive separation flow and new-typed cross-flow vortices of the 76/40 double-delta wing by DES. In: Proc. of the Ninth Asian CFD Conferences, Nanjing. | 
		
				| [87] | 李沁, 郭启龙, 孙东, 等. 2012b. 基于带宽优化和非线性技术的新四阶、五阶格式. 见: 第15届全国CFD会议文集, 2012年8月3-6, 山东烟台. (Li Q, Guo Q L, Sun D and Zhang H X. 2012b. Newly developed 4th-order and 5th-order schemes based on the bandwidth optimization and the nonlinear techniques. In: Proc. of the 15th National CFD Conference. 2012-08-3 6, Yantai, Shandong, China (in Chinese)) | 
		
				| [88] | 刘儒勋, 舒其望. 2003. 计算流体力学若干新方法. 北京: 科学出版社. (Liu R X, Shu C W. 2003. Some New Methods in Computational Fluid Dynamics. Beijing: Science Press (in Chinese)) | 
		
				| [89] | 刘伟, 张来平, 赫新, 等. 2012. 基于Newton/Gauss-Seidel迭代的高阶精度DGM隐式计算方法研究. 力学学报, 44 (4): 792-796 (Liu W, Zhang L P, He X, et al. 2012. An implicit algorithm for discontinuous Galerkin method based on Newton/Gauss-Seidel iterations. Chinese Journal of Theoretical and Applied Mechanics, 44 (4): 792-796. (in Chinese)) | 
		
				| [90] | Liu X D, Osher S, Chan T. 1994. Weighted essentially non oscillatory schemes. J. Comput. Phys., 115: 200-212% | 
		
				| [91] | Liu X D, Osher S. 1998. Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids. J. Comput. Phys., 142: 304-308 | 
		
				| [92] | Liu Y, Vinokur M, Wang Z J. 2006a. Discontinuous spectral difference method for conservation laws on unstructured grids. J. Comput. Phys., 216: 780-801% | 
		
				| [93] | Liu Y, Vinokur M, Wang Z. J.. 2006b. Discontinuous spectral difference method for conservation laws on unstructured grids. In: Proceedings of the 3rd International Conference on Computational Fluid Dynamics, Toronto, Canada, July 12-16. | 
		
				| [94] | Liu Y, Vinokur M, Wang Z J. 2006c. Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J. Comput. Phys., 212: 454-472 | 
		
				| [95] | Li W N, Ren Y X, Lei G D, et al. 2012. The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. J. Comput. Phys., 230: 4053-4077 | 
		
				| [96] | Löhner R, Morgan K, Zienkiewicz O C. 1985. An adaptive finite element procedure for compressible high speed flows. Computer Methods Appli. Mecha. Eng., 51: 441-465 | 
		
				| [97] | Luo H, Baum J D, Löhner R. 2005. High-Reynolds number viscous computations using an unstructured-grid method. J. Aircraft, 42 (2): 483-492 | 
		
				| [98] | Luo H, Baum J D. 2006. A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids. J. Comput. Phys., 211: 767-783 | 
		
				| [99] | Luo H, Baum J D, Löhner R. 2007. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys., 225: 686-713 | 
		
				| [100] | Luo H, Baum J D, Löhner R. 2008. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comput. Phys., 227: 8875-8893 | 
		
				| [101] | Luo H, Luo L P, Nourgaliev R, et al. 2010. A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys., 229: 6961-6978 | 
		
				| [102] | Luo H, Luo L P, Ali A, et al. 2011. A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids. Commun. Comput. Phys., 9 (2): 363-389 | 
		
				| [103] | Mavriplis D J. 1992. Three dimensional unstructured multigrid for the Euler equations. AIAA J., 30 (7): 1753-1761 | 
		
				| [104] | Mavriplis D J. 1995. Multigrid techniques for unstructured meshes. ICASE Report, No. 95-27 | 
		
				| [105] | Mavriplis D J. 1998. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J. Comput. Phys., 145: 141-165 | 
		
				| [106] | May G, Jameson A. 2006. A spectral difference method for the Euler and Navier-Stokes equations. AIAA Paper 2006-304 | 
		
				| [107] | Michalak C, Ollivier-Gooch C. 2009. Accuracy preserving limiter for high-order accurate solution of the Euler equations. J. Comput. Phys., 228: 8693-8711 | 
		
				| [108] | Nastase C R, Mavriplis D J. 2006. High-order discontinuous Galerkin methods using an hp-multigrid approach. J. Comput. Phys., 213: 330-357 | 
		
				| [109] | Oden T J, Carey G F. 1983. Finite Elements: Mathematical Aspects. Vol. IV. Prentice-Hall, Englewood Cliffs, N.J. | 
		
				| [110] | Olivier-Gooch C F. 1997. Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction. J. Comput. Phys., 133: 6-17% | 
		
				| [111] | Park J S, Yoon S H, Kim C. 2010. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids. J. Comput. Phys., 229: 788-812% | 
		
				| [112] | Persson P O, Peraire J. 2006. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006-112 | 
		
				| [113] | Qiu J X, Shu C W. 2003. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys., 193: 115-135 | 
		
				| [114] | Qiu J X, Shu C W. 2005a. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput., 27 (3): 995-1013 | 
		
				| [115] | Qiu J X, Shu C W. 2005b. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method. Comput. & Fluids, 34: 642-663% | 
		
				| [116] | Qiu J X, Khoo B C, Shu C W. 2006. A numerical study for performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys., 212: 540-565 | 
		
				| [117] | Rasetarinera P, Hussaini M Y. 2001. An efficient implicit discontinuous Galerkin method. J. Comput. Phys., 172: 718-738 | 
		
				| [118] | Reed W H, Hill T R. 1973. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory. | 
		
				| [119] | Ren Y X, Liu M, Zhang H X. 2003. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys., 192 (2): 365-386 | 
		
				| [120] | Rider W J, Lowrie R B. 2002. The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods. Int J Num Meth Fluids, 40 (3): 479-86 | 
		
				| [121] | Roe P L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43: 357-372 | 
		
				| [122] | Rusanov V V. 1961. Calculation of interaction of non-steady shock waves with obstacles. J Comput Math Phys USSR, 1: 261-279 | 
		
				| [123] | Saad Y, Schultz M H. 1986. GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput., 7: 865-884% | 
		
				| [124] | Sharov D, Nakahashi K. 1998. Low speed preconditioning and LU-SGS scheme for 3D viscous flow computations on unstructured grids. AIAA Paper 98-0614 | 
		
				| [125] | Shi L, Wang Z J, Fu S, et al. 2012. A PNPM-CPR Method for Navier-Stokes Equations. AIAA Paper 2012-460 | 
		
				| [126] | Sonar T. 1997. On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery accuracy and stencil selection. Comput. Methods Appl. Mech. Eng., 140: 157-181 | 
		
				| [127] | Steger J L, Warming R F. 1981. Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods. J. Comput. Phys., 40: 264-293 | 
		
				| [128] | Sun Y, Wang Z J. 2004. Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grid. Int. J. Numer. Methods Fluids, 45 (8): 819-838 | 
		
				| [129] | Sun Y, Wang Z J, Liu Y. 2006a. Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow. J. Comput. Phys., 215 (1): 41-58 | 
		
				| [130] | Sun Y Z, Wang Z J, Liu Y. 2006b. High-order multi-domain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys., 2: 310-333 | 
		
				| [131] | Sun Y Z, Wang Z J, Liu Y and Chen C L. 2007. Efficient implicit LU-SGS algorithm for high-order spectral difference method on unstructured hexahedral grids. AIAA Paper 2007-0313 | 
		
				| [132] | Tam C K W, Webb J C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys., 107 (1): 262-81. | 
		
				| [133] | Thareja R R and Stewart J R. 1989. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 9: 405-425 | 
		
				| [134] | Thompson J F, Soni B K, Weatherill N P. 1999. Handbook of Grid Generation. CRC Press. | 
		
				| [135] | Toulorge T, Desmet W. 2010. Curved boundary treatments for the discontinuous Galerkin method applied to aeroacoustic propagation. AIAA Journal, 48 (2): 479-489% | 
		
				| [136] | Turner M J, Clough R W, Martin H C, et al. 1956. Stiffness and deflection analysis of complex structures. J. Aeronat. Sci., 23 (9) | 
		
				| [137] | Tutkun B, Edis F O. 2012. A GPU application for high-order compact finite difference scheme. Computers & Fluids, 55: 29-35 | 
		
				| [138] | van den Abeele K, Lacor C. 2007. An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys., 226: 1007-1026 | 
		
				| [139] | van Leer B. 1982. Flux-vector splitting for the Euler equations. Lecture Notes in Physics, 170: 507-512 | 
		
				| [140] | Venkatakrishnan V. 1993. On the accuracy of limiters and convergence to steady state solutions. AIAA Paper 93-0880 | 
		
				| [141] | Vierendeels J, Riemslagh K, Dick E. 1999. A multigrid semi-implicit line-method for viscous incompressible and low-Mach-number flows on high aspect ratio grids. J. Comput. Phys., 154: 310--341 | 
		
				| [142] | Visbal M. 1986. Evaluation of an implicit Navier-Stokes solver for some unsteady separated flows. AIAA Paper 86-1053 | 
		
				| [143] | Vos J B, Rizzi A, Darracq D, Hirschel E H. 2002. Navier-Stokes solvers in European aircraft design. Prog. Aerospace Sci., 38: 601-697 | 
		
				| [144] | Vries de G, Norrie D H. 1971. The application of the finite element technique to potential flow problems. Transactions, ASME, Series E.; J. Appli. Mech., 38: 243-252% | 
		
				| [145] | Wang L, Mavriplis D J. 2007. Implicit solution of the unsteady Euler equation for high-order accurate discontinuous Galerkin discretizations. J. Comput. Phys., 225: 1994-2005 | 
		
				| [146] | Wang Z J. 2002. Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys., 178: 210-251 | 
		
				| [147] | Wang Z J, Liu Y. 2002. Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation. J. Comput. Phys., 179 (2): 665-697 | 
		
				| [148] | Wang Z J, Liu Y. 2004. Spectral (finite) volume method for conservation laws on unstructured grids III: one-dimensional systems and partition optimization. SIAM J. Sci. Comput., 20: 137-157 | 
		
				| [149] | Wang Z J, Zhang L, Liu Y. 2004. Spectral finite volume method for conservation laws on unstructured grids IV: extension to two dimensional systems. J. Comput. Phys., 194 (2): 716-741 | 
		
				| [150] | Wang Z J, Liu Y. 2005. The spectral difference method for the 2D Euler equations on unstructured grids. AIAA Paper 2005-5112 | 
		
				| [151] | Wang Z J, Sun Y, Liang C, et al. 2006. Extension of the SD method to viscous flow on unstructured grids. In: Proceedings of the 4th International Conference on Computational Fluid Dynamics, Gent, Belgium, July 2006. | 
		
				| [152] | Wang Z J. 2007. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerospace Sci., 43: 1-41 | 
		
				| [153] | Wang Z J, Liu Y, May G, et al. 2007. Spectral difference method for unstructured grids II: extension to the Euler equations. SIAM J. Sci. Comput., 32: 45-71 | 
		
				| [154] | Wang Z J, Gao H Y. 2009. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys., 228: 8161-8186 | 
		
				| [155] | Wang Z J, Gao H Y, Haga H. 2011. A unifying discontinuous formulation for hybrid meshes. In: Wang Z J, ed. Adaptive High-Order Methods in Computational Fluid Dynamics, World Scientific pp. 423-454% | 
		
				| [156] | Wang Z J, Shi L, Fu S, et al. 2011. A PNPM-CPR Framework for Hyperbolic Conservation Laws. AIAA Paper 2011-3227 | 
		
				| [157] | Wesseling P. 1990. Multigrid methods in computational fluid dynamics. Z. Angew. Math. Mech., 70: 337-348% | 
		
				| [158] | Wesseling P. 1992. An Introduction to Multigrid Methods. Wiley, Chichester. | 
		
				| [159] | 徐守冻. 1993. 求解超/高超声速无黏绕流的自适应有限元方法. [博士论文]. 北京: 北京大学 (Xu S D. 1993. An adaptative finite element scheme for inviscid hypersonic/supersonic flows. [PhD Dissertation]. Beijing: Peking University. (in Chinese)) | 
		
				| [160] | Yang M, Wang Z J. 2009. A parameter-free generalized moment limiter for high-order methods on unstructured grids, AIAA Paper 2009-605 | 
		
				| [161] | 张涵信, 沈孟育. 2003. 计算流体力学差分方法的原理和应用. 北京: 国防工业出版社. (Zhang H X, Shen M Y. 2003. Computational Fluid Dynamics-Fundamentals and Application of Finite Difference Methods. Beijing: National Defense Industrial Press, (in Chinese)) | 
		
				| [162] | 张涵信. 1986. 无波动、无自由参数的耗散差分格式. 空气动力学学报, 6:143-165 (Zhang H X. 1986. Non-oscillatory and non-free-parameter dissipation difference scheme. Acta Aerodynamica Sinica, 6: 143-165. (in Chinese)) | 
		
				| [163] | 张来平. 1996a. 非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟. [博士论文]. 中国空气动力研究与发展中心. (Zhang L P. 1996. Numerical simulation for complex inviscid flow fields on unstructured grids and Cartesian/unstructured hybrid grids. [PhD Dissertation]. CARDC. (in Chinese)) | 
		
				| [164] | 张来平, 张涵信. 1996b. NND格式在非结构网格中的推广. 力学学报, 28 (2): 135-142. (Zhang L P, Zhang H X. 1996. Development of NND Scheme on Unstructured Grid. Chinese Journal of Theoretical and Applied Mechanics, 28 (2): 135-142. (in Chinese)) | 
		
				| [165] | 张来平, 刘伟, 贺立新, 等. 2011. 一种新的间断侦测器及其在DGM中的应用, 空气动力学学报, 29 (4): 401-406. (Zhang L. P., Liu W, He LX, et al. 2011. A shock detection method and applications in DGM for hyperbolic conservation laws on unstructured grids. Acta Aerodynamica Sinica, 29 (4): 401-406. (in Chinese)) | 
		
				| [166] | Zhang L P, Liu W, He L X, et al. 2012a. A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems. J. Comput. Phys., 231: 1081-1103 | 
		
				| [167] | Zhang L P, Liu W, He L X, et al. 2012b. A class of hybrid DG/FV methods for conservation laws II:Two-dimensional cases. J. Comput. Phys., 231: 1104-1120% | 
		
				| [168] | Zhang L P, Liu W, He L X, et al. 2012. A class of hybrid DG/FV methods for conservation laws III: Two-dimensional Euler equations. Commun. Comput. Phys., 12 (1): 284-314 | 
		
				| [169] | Zhang M P, Shu C W. 2005. An analysis and a comparison between the discontinuous Galerkin method and the spectral finite volume methods. Computers & Fluids, 34 (4-5): 581-592 | 
		
				| [170] | Zhang S H, Zhang Y T, Shu C W. 2006. Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Phys. Fluids, 18: 1-21 | 
		
				| [171] | Zhang S H, Shu C W. 2007. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput., 31 (1/2): 273-305 | 
		
				| [172] | Zhang S H, Zhang H X, Shu C W. 2009. Topology structure of shock induced vortex breakdown. J. Fluid Mech., 639: 343-372 | 
		
				| [173] | Zhang S H, Jiang S F, Shu C W. 2011. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J. Sci. Comput., 47: 216-238% | 
		
				| [174] | Zhong X. 1998. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys., 144 (2): 662-709 | 
		
				| [175] | Zienkiewicz O C, Cheung Y K. 1965. Finite element method in the solution of field problems. The Engineer, 24: 501-510 | 
		
				| [176] | 朱刚, 沈孟育. 1995. 跨声速叶栅粘流计算的多级Taylor-Galerkin有限元法. 空气动力学学报, 13 (4): 414-419. (Zhu G, Shen M Y. 1995. Multilevel Taylor-Galerkin finite element method for viscous transonic flow in turbomachinery. Acta Aerodynamica Sinica, 13 (4): 414-419. (in Chinese)) | 
		
				| [177] | 宗文刚. 2000. 高阶紧致格式及其在复杂流场求解中的应用. [博士论文]. 中国空气动力研究与发展中心. (Zong W G. 2000. High-order compact scheme and its application in complex flow field simulation. [PhD Dissertation]. CARDC. (in Chinese)) |