| [1] | Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal onNumerical Analysis, 39: 742-760. | 
		
				| [2] | Bassi F, Rebay S. 1997. A high-order accurate discontin-uous finite element method for the numerical solutionof the compressible Navier-Stokes equations. Journal ofComputational Physics, 131: 267-279. | 
		
				| [3] | Baumann C E, Oden J T. 1999. A discontinuous h-p fi-nite element method for convection-diffusion problems.Computer Methods in Applied Mechanics and Engineer-ing, 175: 311-341. | 
		
				| [4] | Biswas R, Devine K D, Flaherty J. 1994. Parallel, adaptivefinite element methods for conservation laws. Applied Numerical Mathematics, 14: 255-283. | 
		
				| [5] | Bokanowski O, Cheng Y, Shu C W. 2011. A discontinuous Galerkin solver for front propagation. SIAM Journal onScientific Computing, 33: 923-938. | 
		
				| [6] | Bokanowski O, Cheng Y, Shu C W. A discontinuous Galerkin scheme for front propagation with obsta-cles. Numerische Mathematik, to appear. DOI: 10.1007/s00211-013-0555-3. | 
		
				| [7] | Bokanowski O, Cheng Y, Shu C W. Convergence of dis-continuous Galerkin schemes for front propagation withobstacles. submitted to Mathematics of Computation.Burbeau A, Sagaut P, Bruneau Ch H. 2001. A problem-independent limiter for high-order Runge-Kutta discon-tinuous Galerkin methods. Journal of Computational Physics, 169: 111-150. | 
		
				| [8] | Canuto C, Fagnani F, Tilli P. 2012. An Eulerian approachto the analysis of Krause's consensus models. SIAM Journal on Control and Optimization, 50: 243-265. | 
		
				| [9] | Chen G Q, Liu H. 2003. Formation of ffi-shocks and vacuumstates in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 34: 925-938. | 
		
				| [10] | Cheng Y, Shu C W. 2007. A discontinuous Galerkin finiteelement method for directly solving the Hamilton-Jacobiequations. Journal of Computational Physics, 223: 398-415. | 
		
				| [11] | Cheng Y, Shu C W. 2008. A discontinuous Galerkin finiteelement method for time dependent partial differentialequations with higher order derivatives. Mathematics ofComputation, 77: 699-730. | 
		
				| [12] | Cockburn B. 1999. Discontinuous Galerkin Methods for Convection-Dominated Problems. Berlin, Heidelberg,Springer 69-224. | 
		
				| [13] | Cockburn B, Hou S, Shu C W. 1990. The Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅳ: the multidimensionalcase. Mathematics of Computation, 54: 545-581. | 
		
				| [14] | Cockburn B, Karniadakis G, Shu C W. 2000. The De-velopment of Discontinuous Galerkin Methods. Berlin,Heidelberg, Springer, 3-50. | 
		
				| [15] | Cockburn B, Lin S Y, Shu C W. 1989. TVB Runge-Kuttalocal projection discontinuous Galerkin finite elementmethod for conservation laws Ⅲ: one-dimensional sys-tems. Journal of Computational Physics, 84: 90-113. | 
		
				| [16] | Cockburn B, Shu C W. 1989. TVB Runge-Kutta local pro-jection discontinuous Galerkin finite element method forconservation laws Ⅱ: general framework. Mathematics of Computation, 52: 411-435. | 
		
				| [17] | Cockburn B, Shu C W. 1991. The Runge-Kutta local pro-jection P1-discontinuous-Galerkin finite element methodfor scalar conservation laws. Mathematical Modellingand Numerical Analysis (M2AN), 25: 337-361. | 
		
				| [18] | Cockburn B, Shu C W. 1998. The Runge-Kutta discontin-uous Galerkin method for conservation laws Ⅴ: multidi-mensional systems. Journal of Computational Physics,141: 199-224. | 
		
				| [19] | Cockburn B, Shu C W. 1998. The local discontinu-ous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Anal-ysis, 35: 2440-2463. | 
		
				| [20] | Cockburn B, Shu C W. 2001. Runge-Kutta discontinuousGalerkin methods for convection-dominated problems.Journal of Scientific Computing, 16: 173-261. | 
		
				| [21] | Cockburn B, Shu C W. 2005. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 22-23: 1-3. | 
		
				| [22] | Cockburn B, Shu C W. 2009. Foreword for the special issueon discontinuous Galerkin method. Journal of Scientific Computing, 40: 1-3. | 
		
				| [23] | Dawson C. 2006. Foreword for the special issue on discon-tinuous Galerkin method. Computer Methods in Applied Mechanics and Engineering, 195: 3183. | 
		
				| [24] | Du J, Shu C W, Zhang M. 2013. A simple weighted essen-tially non-oscillatory limiter for the correction procedurevia reconstruction (CPR) framework. submitted to Ap-plied Numerical Mathematics. | 
		
				| [25] | Einfeldt B, Munz C D, Roe P L, Sjöogreen B. 1991. On Godunov-Type methods near low densities. Journal of Computational Physics, 92: 273-295. | 
		
				| [26] | Gottlieb S, Ketcheson D, Shu C W. 2011. Strong Stability Preserving Runge-Kutta and Multistep Time Discretiza-tions, Singapore: World Scientific. | 
		
				| [27] | Harten A. 1983. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,49: 357-393. | 
		
				| [28] | Harten A, Lax P D, van Leer B. 1983. On upstream dif-ferencing and Godunov type schemes for hyperbolic con-servation laws. SIAM Review, 25: 35-61. | 
		
				| [29] | Hesthaven J, Warburton T. 2008. Nodal Discontinuous Galerkin Methods, New York: Springer. | 
		
				| [30] | Hou S, Liu X D. 2007. Solutions of multi-dimensional hy-perbolic systems of conservation laws by square entropycondition satisfying discontinuous Galerkin method.Journal of Scientific Computing, 31: 127-151. | 
		
				| [31] | Hu C, Shu C W. 1999. Weighted essentially non-oscillatorys chemes on triangular meshes. Journal of ComputationalPhysics, 150: 97-127. | 
		
				| [32] | Hu C, Shu C W. 1999. A discontinuous Galerkin finiteelement method for Hamilton-Jacobi equations. SIAMJournal on Scientific Computing, 21: 666-690. | 
		
				| [33] | Jiang G S, Shu C W. 1994. On cell entropy inequality fordiscontinuous Galerkin methods. Mathematics of Com-putation, 62: 531-538. | 
		
				| [34] | Jiang G S, Shu C W. 1996. Efficient implementationof weighted ENO schemes. Journal of ComputationalPhysics, 126: 202-228. | 
		
				| [35] | Kanschat G. 2007. Discontinuous Galerkin Methods for Viscous Flow, Wiesbaden Deutscher Universitätsverlag.Klockner A, Warburton T, Bridge J, Hesthaven J. 2010.Nodal discontinuous Galerkin methods on graphics pro-cessors. Journal of Computational Physics, 228: 7863-7882. | 
		
				| [36] | Krivodonova L, Xin J, Remacle J F, Chevaugeon N, Fla-herty J E. 2004. Shock detection and limiting with dis-continuous Galerkin methods for hyperbolic conservationlaws. Applied Numerical Mathematics, 48: 323-338. | 
		
				| [37] | LeVeque R J. 1990. Numerical Methods for Conservation Laws, Basel: Birkhauser Verlag. | 
		
				| [38] | Li B. 2006. Discontinuous Finite Elements in Fluid Dy-namics and Heat Transfer, Basel Birkhauser. | 
		
				| [39] | Li F, Shu C W. 2005. Reinterpretation and simplifiedimplementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Applied Mathematics Let-ters, 18: 1204-1209. | 
		
				| [40] | Liu H, Yan J. 2009. The direct discontinuous Galerkin(DDG) methods for diffusion problems. SIAM Journalon Numerical Analysis, 47: 675-698. | 
		
				| [41] | Liu H, Yan J. 2010. The direct discontinuous Galerkin(DDG) methods for diffusion with interface corrections.Communications in Computational Physics, 8: 541-564. | 
		
				| [42] | Liu X, Osher S, Chan T. 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics,115: 200-212. | 
		
				| [43] | Oden J T, Babuvska I, Baumann C E. 1998. A discon-tinuous hp finite element method for diffusion problems.Journal of Computational Physics, 146: 491-519. | 
		
				| [44] | Perthame B. 1992. Second-order Boltzmann schemes forcompressible Euler equations in one and two space di-mensions. SIAM Journal on Numerical Analysis, 29:1-19. | 
		
				| [45] | Perthame B, Shu C W. 1996. On positivity preserving fi-nite volume schemes for Euler equations. NumerischeMathematik, 73: 119-130. | 
		
				| [46] | Qiu J M, Shu C W. 2011. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoret-ical analysis and application to the Vlasov-Poisson sys-tem. Journal of Computational Physics, 230: 8386-8409. | 
		
				| [47] | Qiu J X, Shu C W. 2003. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method: one-dimensional case. Journal ofComputational Physics, 193: 115-135. | 
		
				| [48] | Qiu J X, Shu C W. 2005. Hermite WENO schemes andtheir application as limiters for Runge-Kutta discontinu-ous Galerkin method Ⅱ: two dimensional case. Compu-ters and Fluids, 34: 642-663. | 
		
				| [49] | Qiu J X, Shu C W. 2005. Runge-Kutta discontinuousGalerkin method using WENO limiters. SIAM Journalon Scientific Computing, 26: 907-929. | 
		
				| [50] | Qiu J X, Shu C W. 2005. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkinmethods using weighted essentially nonoscillatory lim-iters. SIAM Journal on Scientific Computing, 27: 995-1013. | 
		
				| [51] | Reed W H, Hill T R. 1973. Triangular mesh methods forthe neutron transport equation, Los Alamos ScientificLaboratory Report LA-UR-73-479, Los Alamos, NMRemacle J F, Flaherty J, Shephard M. 2003. An adaptivediscontinuous Galerkin technique with an orthogonal ba-sis applied to Rayleigh-Taylor flow instabilities. SIAM Review, 45: 53-72. | 
		
				| [52] | Riviére B. 2008. Discontinuous Galerkin Methods for Solv-ing Elliptic and Parabolic Equations: Theory and Imple-mentation, Philadelphia: SIAM | 
		
				| [53] | Rossmanith J A, Seal D C. 2011. A positivity-preserving high-order semi-Lagrangian discontinuousGalerkin scheme for the Vlasov-Poisson equations. Jour-nal of Computational Physics, 230: 6203-6232. | 
		
				| [54] | Shi J, Hu C, Shu C W. 2002. A technique of treating neg-ative weights in WENO schemes. Journal of Computa-tional Physics, 175: 108-127. | 
		
				| [55] | Shu C W. 1987. TVB uniformly high-order schemes for con-servation laws. Mathematics of Computation, 49: 105-121. | 
		
				| [56] | Shu C W. 2009. Discontinuous Galerkin methods: Generalapproach and stability. Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathemat-ics CRM Barcelona, 149-201. | 
		
				| [57] | Shu C W, Osher S. 1988. Efficient implementation of essen-tially non-oscillatory shock-capturing schemes. Journalof Computational Physics, 77: 439-471. | 
		
				| [58] | Toro E F. 1999. Riemann Solvers and Numerical Methodsfor Fluid Dynamics, Berlin: Springer-Verlag. | 
		
				| [59] | Wang Z J, Gao H. 2009. A unifying lifting colloca-tion penalty formulation including the discontinuousGalerkin, spectral volume/difference methods for conser-vation laws on mixed grids. Journal of Computational Physics, 228: 8161-8186. | 
		
				| [60] | Wheeler M F. 1978. An elliptic collocation-finite elementmethod with interior penalties. SIAM Journal on Nu-merical Analysis, 15: 152-161. | 
		
				| [61] | Xing Y, Zhang X, Shu C W. 2010. Positivity preservinghigh order well balanced discontinuous Galerkin meth-ods for the shallow water equations. Advances in Water Resources, 33: 1476-1493. | 
		
				| [62] | Xu Y, Shu C W. 2010. Local discontinuous Galerkin meth-ods for high-order time-dependent partial differentialequations. Communications in Computational Physics,7: 1-46. | 
		
				| [63] | Yan J, Osher S. 2011. A local discontinuous Galerkinmethod for directly solving Hamilton Jacobi equations.Journal of Computational Physics, 230: 232-244. | 
		
				| [64] | Yang Y, Shu C W. 2013. Discontinuous Galerkin method for hyperbolic equations involving ffi-singularities:negative-order norm error estimates and applications.Numerische Mathematik, 124: 753-781. | 
		
				| [65] | Yang Y, Wei D, Shu C W. 2013. Discontinuous Galerkinmethod for Krause's consensus models and pressureless Euler equations. Journal of Computational Physics, 252:109-127. | 
		
				| [66] | Zhang Q, Shu C W. 2010. Stability analysis and a priorierror estimates to the third order explicit Runge-Kuttadiscontinuous Galerkin method for scalar conservationlaws. SIAM Journal on Numerical Analysis, 48: 1038-1063. | 
		
				| [67] | Zhang X, Shu C W. 2010. On maximum-principle-satisfying high order schemes for scalar conservationlaws. Journal of Computational Physics, 229: 3091-3120. | 
		
				| [68] | Zhang X, Shu C W. 2010. On positivity preserving highorder discontinuous Galerkin schemes for compressibleEuler equations on rectangular meshes. Journal of Com-putational Physics, 229: 8918-8934. | 
		
				| [69] | Zhang X, Shu C W. 2011a. Positivity-preserving high orderdiscontinuous Galerkin schemes for compressible Eulerequations with source terms. Journal of ComputationalPhysics, 230: 1238-1248. | 
		
				| [70] | Zhang X, Shu C W. 2011b. Maximum-principle-satisfyingand positivity-preserving high order schemes for conser-vation laws: Survey and new developments, in: Proceed-ings of the Royal Society A, 467: 2752-2776. | 
		
				| [71] | Zhang X, Shu C W. 2012. A minimum entropy principleof high order schemes for gas dynamics equations. Nu-merische Mathematik, 121: 545-563. | 
		
				| [72] | Zhang X, Xia Y, Shu C W. 2012. Maximum-principle-satisfying and positivity-preserving high order discontin-uous Galerkin schemes for conservation laws on triangu-lar meshes. Journal of Scientific Computing, 50: 29-62. | 
		
				| [73] | Zhang Y, Zhang X, Shu C W. 2013. Maximum-principle-satisfying second order discontinuous Galerkin schemesfor convection-diffusion equations on triangular meshes.Journal of Computational Physics, 234: 295-316. | 
		
				| [74] | Zhang Y T, Shu C W. 2009. Third order WENO scheme onthree dimensional tetrahedral meshes. Communicationsin Computational Physics, 5: 836-848. | 
		
				| [75] | Zhong X, Shu C W. 2012. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuousGalerkin methods. Journal of Computational Physics,232: 397-415. | 
		
				| [76] | Zhu J, Qiu J X, Shu C W, Dumbser M. 2008. Runge-Kutta discontinuous Galerkin method using WENO lim-iters II: Unstructured meshes. Journal of ComputationalPhysics, 227: 4330-4353. | 
		
				| [77] | Zhu J, Zhong X, Shu C W, Qiu J X. 2013. Runge-Kutta dis-continuous Galerkin method using a new type of WENOlimiters on unstructured meshes. Journal of Computa-tional Physics, 248: 200-220. |