| [1] | Altshuler D L, Dickson W B, Vance J T, Roberts S P, Dickinson M H. 2005. Short-amplitude high frequencywing strokes determine the aerodynamics of honeybee flight. PNAS., 102: 18213-18218. | 
		
				| [2] | Ansari S A, Phillips N, Stabler G, Zbikowski R, Knowles K. 2009. Spanwise flow on an impulsively-startedrotating wing at low Reynolds numbers. In: Proceedings of 39th AIAA Fluid Dynamics Conference, SanAntonio, Texas, AIAA-2009-4032: 1–9. | 
		
				| [3] | Ansari S A, Zbikowski R, Knowles K. 2006. Aerodynamic modeling of insect-like flapping flight for microair vehicles. Prog. Aerosp. Sci., 42: 129-172. | 
		
				| [4] | Aono H, Liang F, Liu H. 2008. Near-and far-field aerodynamics in insect hovering flight: An integratedcomputational study. J. Exp. Biol., 211: 239-257. | 
		
				| [5] | Ansari S A. 2004. A nonlinear, unsteady, aerodynamic model for insect-like flapping wings in the hover withmicro air vehicle applications. [PhD Thesis]. Shrivenham: Cranfield University. | 
		
				| [6] | Berman G J, Wang Z J. 2007. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech., 582:153-168. | 
		
				| [7] | Bergou A J, Ristroph L, Guckenheimer J, Cohen I, Wang Z J. 2010. Fruit flies modulate passive wingpitching to generate in-flight turns. Phys. Rev. Lett., 104: 148101. | 
		
				| [8] | Betts C R, Wootton R J. 1988. Wing shape and flight behaviour in butterflies (Lepidoptera: papilionoideaand hesperioidea): A preliminary analysis. J. Exp. Biol., 138: 271-288. | 
		
				| [9] | Birch J M, Dickinson M H. 2001. Spanwise flow and the attachment of the leading-edge vortex on insectwings. Nature, 412: 729-733. | 
		
				| [10] | Birch J M, Dickinson M H. 2003. The influence of wing-wake interactions on the production of aerodynamicforces in flapping flight. J. Exp. Biol., 206: 2257-2272. | 
		
				| [11] | Birch J M, Dickson W B, Dickinson M H. 2004. Force production and flow structure of the leading edgevortex on flapping wings at high and low Reynolds numbers. J. Exp. Biol., 207: 1063–1072. | 
		
				| [12] | Bomphrey R J, Taylor G K, Thomas A L R. 2009. Smoke visualization of free-flying bumblebees indicatesindependent leading-edge vortices on each wing pair. Exp Fluids, 46: 811–821. | 
		
				| [13] | Brodsky A K. 1991. Vortex formation in the tethered flight of the peacock butterfly Inachis Io L. (Lepidoptera,Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol., 161: 77-95. | 
		
				| [14] | Card G, Dickinson M H. 2008. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol.211: 341-353. | 
		
				| [15] | Carr Z R, Chen C, Ringuette M J. 2013. Finite-span rotating wings: three-dimensional vortex formationand variations with aspect ratio. Exp. Fluids, 54: 1–26. | 
		
				| [16] | Chen M W, Zhang Y L, Sun M. 2013. Wing and body motion and aerodynamic and leg forces duringtake-off in droneflies: J. R. Soc. Interface, 10: 20130808. | 
		
				| [17] | Chen M W, Sun M. 2014. Wing/body kinematics measurement and force and moment analyses of the takeoffflight of fruitflies. Acta Mechanica Sinica, 30: 495-506. | 
		
				| [18] | Davis W R, Kosichi B B, Boroson D M, Kostishack D F. 1996. Micro air vehicle for optical surveillance.The Lincoln Laboratory J., 9: 197-217. | 
		
				| [19] | Dickinson M H, G¨otz K G. 1993. Unsteady aerodynamic performance of model wings at low Reynoldsnumbers. J. Exp. Biol., 174: 45-64. | 
		
				| [20] | Dickinson M H, Lehman F O, Sane S P. 1999. Wing rotation and the aerodynamic basis of insect flight.Science, 284: 1954-1960. | 
		
				| [21] | Du G, Sun M. 2008. Effects of unsteady deformation of flapping wings on its aerodynamic forces. Appl.Math. Mech. Engl. Ed., 29: 731-741. | 
		
				| [22] | Du G, Sun M. 2010. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp. Biol.,213: 2273-2283. | 
		
				| [23] | Du G, Sun M. 2012. Aerodynamic effects of corrugation and deformation in flapping wings of hoveringhoverflies. J. Theor. Biol., 300: 19-28. | 
		
				| [24] | Dudley R. 1990. Biomechanics of flight in neotropical butterflies: Morphometrics and kinematics. J. Exp.Biol., 150: 37-53. | 
		
				| [25] | Dudley R. 1991. Biomechanics of flight in neotropical butterflies: Aerodynamics and mechanical powerrequirements. J. Exp. Biol. 159: 335-357. | 
		
				| [26] | Dudley R. 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton: PrincetonUniversity Press. | 
		
				| [27] | Dudley R, Ellington C P. 1900a. Mechanics of forward flight in bumblebees: I. Kinematics and morphology.J. Exp. Biol., 148: 19-52. | 
		
				| [28] | Dudley R, Ellington C P. 1990b. Mechanics of forward flight in bumblebees: II. Quasi-steady lift and powerrequirements. J. Exp. Biol., 148: 53-88. | 
		
				| [29] | Eldredge J D, Toomey J, Medina A. 2010. On the roles of chord-wise flexibility in a flapping wing withhovering kinematics. J. Fluid Mech. 659: 94-115 | 
		
				| [30] | Ellington C P. 1984a. The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Phil. Trans.R. Soc. Lond. B, 305: 1-15. | 
		
				| [31] | Ellington C P. 1984b. The aerodynamics of hovering insect flight. II. Morphological parameters. Phil.Trans. R. Soc. Lond. B, 305: 17-40. | 
		
				| [32] | Ellington C P. 1984c. Aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond.B, 305: 41-78. | 
		
				| [33] | Ellington C P 1984d The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc.Lond. B, 305: 115–144. | 
		
				| [34] | Ellington C P. 1991. Aerodynamics and the origin of insect flight. Adv. Insect Physiol., 23: 171-210. | 
		
				| [35] | Ellington C P. 1995. Unsteady aerodynamics of insect flight. Symp. Soc. Exp. Biol., 49: 109-129. | 
		
				| [36] | Ellington C P. 1999. The novel aerodynamics of insect flight: Applications to micro-air vehicles. J. Exp.Biol., 202: 3439-3448. | 
		
				| [37] | Ellington C P, Machin K E, Casey T M. 1990. Oxygen consumption of bumblebees in forward flight. Nature,347: 472. | 
		
				| [38] | Ellington C P, Van Den Berg C, Willmott A P, Thomas A L R. 1996. Leading-edge vortices in insect flight.Nature, 384: 626-630. | 
		
				| [39] | Ennos A R. 1988. The importance of torsion in the design of insect wings. J. Exp. Biol., 140: 137-160.Ennos A R. 1989. The kinematics and aerodynamics of the free flight of some Diptera. J. Exp. Biol., 142:49-85. | 
		
				| [40] | Fry S N, Sayaman R, Dickinson M H. 2003. The aerodynamics of free-flight maneuvers in Drosophila.Science, 300: 495-498. | 
		
				| [41] | Fry S N, Sayaman R, Dickinson M H. 2005. The aerodynamics of hovering flight in Drosophila: J. Exp.Biol., 208: 2303-2318. | 
		
				| [42] | Fung Y C. 1969. An Introduction to the Theory of Aeroelasticity. John Wiley & Sons, Inc., New York,Chapman & Hall, Ltd., London. | 
		
				| [43] | Garmann D J, Visbal M R. 2014. Dynamics of revolving wings for various aspect ratios. J. Fluid Mech.,748: 932–956. | 
		
				| [44] | Garmann D J, Visbal M R, Orkwis P. 2013. Three-dimensional flow structure and aerodynamic loading ona revolving wing. Phys. Fluids, 25: 034101-034127. | 
		
				| [45] | Harbig R R, Sheridan J, Thompson M C. 2013. Reynolds number and aspect ratio effects on the leading-edgevortex for rotating insect wing planforms. J. Fluid Mech., 717: 166–192. | 
		
				| [46] | Huang H, Sun M. 2012. Forward flight of a model butterfly: Simulation by equations of motion coupledwith the Navier–Stokes equations. Acta Mechanica Sinica, 28: 1–12. | 
		
				| [47] | Ishihara D, Horie T, Denda M. 2009. A two-dimensional computational study on the fluid–structure interactioncause of wing pitch changes in dipteran flapping flight. J. Exp. Biol., 212: 1-10. | 
		
				| [48] | Jardin T, Farcy A, David L. 2012. Three-dimensional effects in hovering fapping flight. J. Fluid Mech.,702: 102–125. | 
		
				| [49] | Kim D, Gharib M. 2010. Experimental study of three-dimensional vortex structures in translating androtating plates. Exp. Fluids, 49: 329–339. | 
		
				| [50] | Lan S L, Sun M. 2001. Aerodynamic properties of a wing performing unsteady motions at low Reynoldsnumber. Acta. Mechanica, 149: 135-147. | 
		
				| [51] | Lentink D, Dickinson M H. 2009. Rotational accelerations stabilize leading edge vortices on revolving flywings. J. Expl Biol., 212: 2705–2719. | 
		
				| [52] | Liang B, Sun M. 2013. Aerodynamic interactions between wing and body of a model insect at forward flightand in maneuvers. J. Bionic Eng., 10: 19-27. | 
		
				| [53] | Lighthill M J. 1973. On the Weis-Fogh mechanism of lift generation. J. Fluid Mech., 60: 1-17. | 
		
				| [54] | Liu H, Ellington C P, Kawachi K, Van Den Berg C, Willmott A P. 1998. A computational fluid dynamicstudy of hawkmoth hovering. J. Exp. Biol., 201: 461-477. | 
		
				| [55] | Liu H, Aono H. 2009. Size effects on insect hovering aerodynamics: An integrated computation study.Bioinsp. Biomm. 4: 015002. | 
		
				| [56] | Liu Y P, Sun M. 2008. Wing kinematics measurement and aerodynamics of hovering drone-flies. J. Exp.Biol., 211: 2014-2025. | 
		
				| [57] | Lu Y, Shen G X. 2008. Three-dimensional flow structures and evolution of the leading-edge vortices on aflapping wing. J. Exp. Biol., 211: 1221–1230. | 
		
				| [58] | Luo G Y, Sun M. 2005. The effects of corrugation and wing planform on the aerodynamic force productionof sweeping model insect wings. Acta Mechanica Sinica, 21: 531-541. | 
		
				| [59] | Ma K Y, Chirarattananon P, Fuller S B, Wood R J. 2013. Controlled flight of a biologically inspired,insect-scale robot. Science, 340: 603-607. | 
		
				| [60] | Maxworthy T. 1979. Experiments on the Weis-Fogh mechanism of lift generation by insects in hoveringflight. Part 1. Dynamics of the “fling”. J. Fluid Mech., 93: 47-63. | 
		
				| [61] | Meng X G, Sun M. 2013. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers.Physics of Fluids, 25 : 071905. | 
		
				| [62] | Miller L A, Peskin C S. 2005. A computational fluid dynamics of “clap and fling” in the smallest flyinginsects. J. Exp. Biol., 208: 195-212. | 
		
				| [63] | Miller L A, Peskin C S. 2009. Flexible clap and fling in tiny insect flight. J. Exp. Biol., 212: 3076-3090. | 
		
				| [64] | Mou X L, Liu Y P, Sun M. 2011. Wing motion measurement and aerodynamics of hovering true hoverflies.J. Exp. Biol., 214: 2832-2844. | 
		
				| [65] | Muijres F T, Elzinga M J, Melis J M, Dickinson M H. 2014. Flies evade looming targets by executing rapidvisually directed banked turns. Science, 344: 172-177. | 
		
				| [66] | Nakata T, Liu H. 2012a. A fluid-structure interaction model of insect flight with flexible wings. J. Comput.Phys., 231: 1822-1847. | 
		
				| [67] | Nakata T, Liu H. 2012b. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computationalapproach. Proc. R. Soc. B., 279: 722-731. | 
		
				| [68] | Newman D J S, Wootton R J. 1986. An approach to the mechanics of pleating in dragonfly wings. J. Exp.Biol., 125: 361-372. | 
		
				| [69] | Ozen C A, Rockwell D. 2012. Three-dimensional flow structure on a rotating wing. J. Fluid Mech., 707:541–550. | 
		
				| [70] | Pesavento U, Wang Z J. 2004. Navier–Stokes solutions, model of fluid forces, and center of mass elevation.Phys. Rev. Lett., 93: 116-164. | 
		
				| [71] | Rees C J C. 1975. Form and function in corrugated insect wings. Nature, 256: 200-203. | 
		
				| [72] | Sane S P. 2003. The aerodynamics of insect flight. J. Exp. Biol., 206: 4191-4208. | 
		
				| [73] | Sane S P, Dickinson M H. 2002. The aerodynamic effects of wing rotation and a revised quasi-steady modelof flapping flight. J. Exp. Biol., 205: 1087-1098. | 
		
				| [74] | Shyy W, Liu H. 2007. Flapping wings and aerodynamic lift: The role of leading-edge vortices. AIAAJournal, 45: 2817–2819 | 
		
				| [75] | Shyy W, Trizilla P, Kang C K, Aono H. 2009. Can Tip Vortices enhance lift of a flapping wing? AIAAJournal, 2: 289–293. | 
		
				| [76] | Shyy W, Aono H, Chimakurthi S K, Trizila P, Kang C K, Cesink C E S, Liu H. 2010. Recent progress inflapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci., 46: 284. | 
		
				| [77] | Shyy W, Berg M, Ljungqvist D. 1999. Flapping and flexible wings for biological and micro air vehicles.Prog. Aerosp. Sci., 35: 455. | 
		
				| [78] | Shyy W, Lian Y, Tang J, Viieru D, Liu H. 2008. Aerodynamics of Low Reynolds Number Fliers. New York:Cambridge University Press. | 
		
				| [79] | Srygley R B, Thomas A L R. 2002. Unconventional lift-generating mechanisms in free-flying butterflies.Nature, 420: 660-664. | 
		
				| [80] | Sun M. 2005. High-lift generation and power requirements of insect flight. Fluid Dynamics Research, 37:21-39 | 
		
				| [81] | Sun M, Du G. 2003. Lift and power requirements of hovering insect flight. Acta Mechanica Sinica, 19:458-469. | 
		
				| [82] | Sun M, Lan S L. 2004. A computational study of the aerodynamic forces and power requirements of dragonfly(Aeschna juncea) hovering. J. Exp. Biol., 207: 1887-1901. | 
		
				| [83] | Sun M, Tang J. 2002. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.J. Exp. Biol., 205: 55-70. | 
		
				| [84] | Sun M, Wu J H. 2004. Large aerodynamic forces on a sweeping wing at low Reynolds number. ActaMechanica Sinica, 20: 24–31. | 
		
				| [85] | Sun M, Yu X. 2003. Flow around two airfoils performing fling and subsequent translation and translationand subsequent flap. Acta Mechanica Sinica, 19: 103-117. | 
		
				| [86] | Sun M, Yu X. 2006. Aerodynamic force generation in hovering flight in a tiny insect. AIAA Journal, 44:1532-1540. | 
		
				| [87] | Sunada S, Kawachi K, Watanabe I. 1993. Performance of a butterfly in take-off flight. J. Exp. Biol., 183:249-227. | 
		
				| [88] | Sunada S, Takashima H, Hattori T, Yasuda K, Kawachi K. 2002. Fluid-dynamic characteristics of a bristledwing. J. Exp. Biol., 205: 2737–2744. | 
		
				| [89] | Tanaka S. 1995. Thrips’ flight. Part 1. In: Symposia 95 of Exploratory Research for Advanced Technology,Japan Science and Technology Corporation, Tokyo, 27–34. | 
		
				| [90] | Usherwood J R, Ellington C P. 2002a. The aerodynamics of revolving wings. I. Model hawkmoth wings. J.Exp. Biol., 205: 1547-1564. | 
		
				| [91] | Usherwood J R, Ellington C P. 2002b. The aerodynamics of revolving wings. II. Propeller force coefficientsfrom mayfly to quail. J. Exp. Biol., 205: 1565-1576. | 
		
				| [92] | Usherwood J R, Lehmann F. 2008. Phasing of dragonfly wings can improve aerodynamic efficiency byremoving swirl. J. R. Soc. Interface, 5: 1303–1307. | 
		
				| [93] | Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B. 2009. Influence of flexibility on theaerodynamic performance of a hovering wing. J. Exp. Biol., 212: 95-105. | 
		
				| [94] | Vogel S. 1967a. Flight in Drosophila. II. Variations in stroke parameters and wing contour. J. Exp. Biol.,46: 383-392. | 
		
				| [95] | Vogel S. 1967b. Flight in Drosophila. III. Aerodynamic characteristics of fly wings and wing models. J.Exp. Biol., 46: 431-443. | 
		
				| [96] | Walker S M, Thomas A L R, Taylor G K. 2010. Deformable wing kinematics in free-flying hoverflies. J. R.Soc. Interface, 7: 131-142. | 
		
				| [97] | Wang H, Zeng L J, Liu H, Yin C Y. 2003. Measuring wing kinematics, flight trajectory and body attitudeduring forward flight and turning maneuvers in dragonflies. J. Exp. Biol., 206: 745-757 | 
		
				| [98] | Wang H, Zeng L J, Yin C Y. 2002. Measuring the body position, attitude and wing deformation of a freeflightdragonfly by combining a comb fringe pattern with sign points on the wing. Measurement Scienceand Technology, 13: 903-908. | 
		
				| [99] | Wang Z J. 2004. The role of drag in insect hovering. J. Exp. Biol., 207: 4147-4155. | 
		
				| [100] | Wang Z J. 2005. Dissecting insect flight. Annu. Rev. Fluid Mech., 37: 183-210. | 
		
				| [101] | Wang Z J, Russell D. 2007. Effect of forewing and hindwing interactions on aerodynamic forces and powerin hovering dragonfly flight. Phys. Rev. Lett., 99: 148101. | 
		
				| [102] | Wang X X, Wu Z N. 2010. Stroke-averaged lift forces due to vortex rings and their mutual interactions fora flapping flight model. J. Fluid Mech., 654: 453-472. | 
		
				| [103] | Wang X X, Wu Z N. 2012. Lift force reduction due to body image of vortex for a hovering flight model. J.Fluid Mech., 709: 648-658. | 
		
				| [104] | Weis-Fogh T. 1972. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol., 56:79-104. | 
		
				| [105] | Weis-Fogh T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanism for liftproduction. J. Exp. Biol., 59: 169-230. | 
		
				| [106] | Weis-Fogh T, Jensen M. 1956. Biology and physics of locust flight. I. Basic principles of insect flight. Acritical review. Philos. Trans. R. Soc. B: Biol. Sci., 239: 415-458. | 
		
				| [107] | Willmott A P, Ellington C P. 1997a. The mechanics of flight in the hawkmoth Manduca Sexta. I. Kinematicsof hovering and forward flight. J. Exp. Biol., 200: 2705-2722. | 
		
				| [108] | Willmott A P, Ellington C P. 1997b. The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamicconsequences of kinematic and morphological variation. J. Exp. Biol., 200: 2723-2745. | 
		
				| [109] | Wilson J. 2001. Micro warfare. Popular Mechanics, 2: 62.Wojcik C J, Buchholz J H J. 2014. Vorticity transport in the leading-edge vortex on a rotating blade. J.Fluid Mech., 743: 249-261. | 
		
				| [110] | Wootton R J. 1981. Palaeozoic insects. Annu. Rev. Ent., 26: 319-344. | 
		
				| [111] | Wu J H, Sun M. 2004. Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol., 207: 1137-1150.Wu J H, Sun M. 2005. The influence of the wake of a flapping wing on the production of aerodynamic forces.Acta Mechanica Sinica, 21: 411-418. | 
		
				| [112] | Wu T Y. 2011. Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech., 43: 25-48. | 
		
				| [113] | Yamamoto M, Isogai K. 2005. Measurement of unsteady aerodynamic forces for a mechanical dragonflymodel. AIAA Journal, 43: 2475-2480. | 
		
				| [114] | Yokoyama N, Senda K, Iima M, Hirai N. 2013. Aerodynamic forces and vortical structures in flappingbutterfly’s forward flight. Physics of Fluids, 25: 021902. | 
		
				| [115] | Young J, Walker S M, Bomphrey R J, Taylor G K, Thomas L R. 2009. Details of insect wing design anddeformation enhance aerodynamic function and flight efficiency. Science, 325: 1549-1552. | 
		
				| [116] | Yu X, Sun M. 2009. A computational study of the wing-wing and wing-body interactions of a model insect.Acta Mechanica Sinica, 25: 421-431. | 
		
				| [117] | Yu Y L, Tong B G. 2005. A flow control mechanism in wing flapping with stroke asymmetry during insectforward flight. Acta Mechanica Sinica, 21: 218-227. | 
		
				| [118] | Yu Y L, Tong B G, Ma H Y. 2003. An analytical approach to theoretical modeling of highly unsteadyviscous flow excited by wing flapping in small insects. Acta Mechanica Sinica, 19: 508-516. | 
		
				| [119] | Yu Y L, Tong B G, Ma H Y. 2005. Unsteady flow mechanics revisited in insect flapping flight. ActaMechanica Sinica, 37: 257-265. | 
		
				| [120] | Zhang J, Lu X Y. 2009. Aerodynamic performance due to forewing and hindwing interaction in glidingdragonfly flight. Physical Review E, 80: 017302-017305. | 
		
				| [121] | Zhang Y L, Sun M. 2010. Wing kinematics measurement and aerodynamics of free-flight maneuvers indrone-flies. Acta Mechanica Sinica, 26: 371-382. | 
		
				| [122] | Zanker J M. 1990. The wing beat of Drosophila melanogaster. I. Kinematics. Phil. Trans. R. Soc. Lond.B, 327: 1-18. | 
		
				| [123] | Zhao L, Huang Q, Deng X Y, Sane S P. 2010. Aerodynamic effects of flexibility in flapping wings. J. R.Soc. Interface, 7: 485-497. | 
		
				| [124] | Zhao L, Deng X Y, Sane S P. 2011. Modulation of leading edge vorticity and aerodynamic forces in flexibleflapping wings. Bioinsp. Biomim., 6: 036007.flapping wings. Bioinsp. Biomim., 6: 036007. |