| [1] | 韩同伟, 贺鹏飞, 骆英, 张晓燕. 2011. 石墨烯力学性能研究进展. 力学进展, 41: 279-293(Han T W, He P F, Luo Y, Zhang X Y.2011. Research progress in the mechanical properties of graphene. Advances in Mechanics, 41: 279-293). | 
		
				| [2] | 杨晓东, 贺鹏飞, 吴艾辉, 郑百林. 2010. 石墨烯纳米压痕实验的分子动力学模拟. 中国科学: 物理学力学天文学, 40: 353-361(Yang X D, He P F, Wu A H, Zheng B L.2010. Molecular dynamics simulation of nanoindentation for graphene. Scientia Sinica,40: 353-360). | 
		
				| [3] | Annamalai M, Mathew S, Jamali M, Zhan D, Palaniapan M.2012. Elastic and nonlinear response of nanomechanical graphene devices. Journal of Micromechanics and Microengineering, 22: 105024. | 
		
				| [4] | Arroyo M, Belytschko T.2004. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 69: 115415. | 
		
				| [5] | Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N.2008. Superior thermal conductivity of single-layer graphene. Nano Letters, 8: 902-907. | 
		
				| [6] | Bao W X, Zhu C C, Cui W Z.2004. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B-Condensed Matter, 352: 156-163. | 
		
				| [7] | Bertolazzi S, Brivio J, Kis A.2011. Stretching and breaking of ultrathin MoS2. ACS Nano, 5: 9703-9709. | 
		
				| [8] | Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L.2008. Impermeable atomic membranes from graphene sheets. Nano Letters, 8: 2458-2462. | 
		
				| [9] | Cadelano E, Palla P L, Giordano S, Colombo L.2009. Nonlinear elasticity of monolayer graphene. Physical Review Letters, 102: 235502. | 
		
				| [10] | Cao G.2014. Atomistic studies of mechanical properties of graphene. Polymers, 6: 2404-2432. | 
		
				| [11] | Cao G X, Chen X.2006. Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method. Physical Review B, 73: 155435. | 
		
				| [12] | Capella B, Baschieri P, Frediani C, Miccoli P, Ascoli C.1997. Force-distance curves by AFM---A powerful technique for studying surface interactions. IEEE Engineering in Medicine and Biology Magazine, 16: 58-65. | 
		
				| [13] | Castellanos-Gomez A, Poot M, Amor-Amoros A, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012a. Mechanical properties of freely suspended atomically thin dielectric layers of mica. Nano Research, 5: 550-557. | 
		
				| [14] | Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012b. Elastic properties of freely suspended MoS2 nanosheets. Advanced Materials, 24: 772-775. | 
		
				| [15] | Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agrait N, Rubio-Bollinger G.2012c. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Research Letters, 7: 1-4. | 
		
				| [16] | Castellanos-Gomez A, van Leeuwen R, Buscema M, van der Zant H S J, Steele G A, Venstra W J.2013. Single-layer MoS2 mechanical resonators. Advanced Materials, 25: 6719-6723. | 
		
				| [17] | Chang T C, Gao H J.2003. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 51: 1059-1074. | 
		
				| [18] | Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S.2008. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3: 206-209. | 
		
				| [19] | Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J, Kysar J W.2013. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Physical Review B, 87: 035423. | 
		
				| [20] | Eda G, Fanchini G, Chhowalla M.2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3: 270-274. | 
		
				| [21] | Elahi M, Khaliji K, Tabatabaei S M, Pourfath M, Asgari R.2015. Modulation of electronic and mechanical properties of phosphorene through strain. Physical Review B, 91: 115412. | 
		
				| [22] | Frank I W, Tanenbaum D M, van der Zande A M, McEuen P L.2007. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25: 2558-2561. | 
		
				| [23] | Gao E L, Xu Z P.2015. Thin-shell thickness of two-dimensional materials. Journal of Applied Mechanics-Transactions of the Asme, 82: 121012. | 
		
				| [24] | Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S, Mishchenko A.2013. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 8: 100-103. | 
		
				| [25] | Gomez-Navarro C, Burghard M, Kern K.2008. Elastic properties of chemically derived single graphene sheets. Nano Letters, 8: 2045-2049. | 
		
				| [26] | Grantab R, Shenoy V B, Ruoff R S.2010. Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 330: 946-948. | 
		
				| [27] | Gupta S, Dharamvir K, Jindal V K.2005. Elastic moduli of single-walled carbon nanotubes and their ropes. Physical Review B, 72: 165428. | 
		
				| [28] | Hajgato B, Guryel S, Dauphin Y, Blairon J M, Miltner H E, Van Lier G, De Proft F, Geerlings P.2012. Theoretical investigation of the intrinsic mechanical properties of single- and double-layer graphene. Journal of Physical Chemistry C, 116: 22608-22618. | 
		
				| [29] | Han J, Pugno N M, Ryu S.2015. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale, 7: 15672-15679. | 
		
				| [30] | Han J, Ryu S, Sohn D.2016. A feasibility study on the fracture strength measurement of polycrystalline graphene using nanoindentation with a cylindrical indenter. Carbon, 107: 310-318. | 
		
				| [31] | He L C, Guo S S, Lei J C, Sha Z D, Liu Z S.2014. The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets---A molecular dynamics study. Carbon, 75: 124-132. | 
		
				| [32] | Hemmasizadeh A, Mahzoon M, Hadi E, Khandan R.2008. A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films, 516: 7636-7640. | 
		
				| [33] | Hernandez E, Goze C, Bernier P, Rubio A.1998. Elastic properties of C and BxCyNz composite nanotubes. Physical Review Letters, 80: 4502-4505. | 
		
				| [34] | Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A.2011. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 469: 389. | 
		
				| [35] | Huang Y, Wu J, Hwang K C.2006. Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 74: 245413. | 
		
				| [36] | Jiang J-W, Rabczuk T, Park H S.2015. A Stillinger-Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. Nanoscale, 7: 6059-6068. | 
		
				| [37] | Jiang J W.2014. Phonon bandgap engineering of strained monolayer MoS2. Nanoscale, 6: 8326-8333. | 
		
				| [38] | Jiang J W.2015. Parametrization of Stillinger-Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus. Nanotechnology, 26: 315706. | 
		
				| [39] | Jing N N, Xue Q Z, Ling C C, Shan M X, Zhang T, Zhou X Y, Jiao Z Y.2012. Effect of defects on Young's modulus of graphene sheets: A molecular dynamics simulation. RSC Advances, 2: 9124-9129. | 
		
				| [40] | Kitt A L, Qi Z N, Remi S, Park H S, Swan A K, Goldberg B B.2013. How graphene slides: Measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Letters, 13: 2605-2610. | 
		
				| [41] | Koenig S P, Boddeti N G, Dunn M L, Bunch J S.2011. Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 6: 543-546. | 
		
				| [42] | Konakov Y V, Ovid'ko I A, Sheinerman A G.2014. Equilibrium dislocation structures at grain boundaries in subsurface areas of polycrystalline graphene and ultrafine-grained metals. Reviews on Advanced Materials Science, 37: 83-89. | 
		
				| [43] | Koskinen P, Kit O O.2010. Approximate modeling of spherical membranes. Physical Review B, 82: 235420. | 
		
				| [44] | Kudin K N, Scuseria G E, Yakobson B I.2001. C2F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B, 64: 235406. | 
		
				| [45] | Kunz D A, Max E, Weinkamer R, Lunkenbein T, Breu J, Fery A.2009. Deformation measurements on thin clay tactoids. Small, 5: 1816-1820. | 
		
				| [46] | Lee C, Wei X D, Kysar J W, Hone J.2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 385-388. | 
		
				| [47] | Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerherg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J.2013. High-strength chemical-vapor deposited graphene and grain boundaries. Science, 340: 1073-1076. | 
		
				| [48] | Lee J U, Yoon D, Cheong H.2012. Estimation of Young's modulus of graphene by Raman Spectroscopy. Nano Letters, 12: 4444-4448. | 
		
				| [49] | Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B.2014. Black phosphorus field-effect transistors. Nature Nanotechnology, 9: 372-377. | 
		
				| [50] | Li P, You Z, Haugstad G, Cui T H.2011. Graphene fixed-end beam arrays based on mechanical exfoliation. Applied Physics Letters, 98: 253105. | 
		
				| [51] | Lin Q Y, Jing G, Zhou Y B, Wang Y F, Meng J, Bie Y Q, Yu D P, Liao Z M.2013. Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano, 7: 1171-1177. | 
		
				| [52] | Liu F, Ming P M, Li J.2007. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76: 064120. | 
		
				| [53] | Liu K, Yan Q M, Chen M, Fan W, Sun Y H, Suh J, Fu D Y, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J Q.2014. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Letters, 14: 5097-5103. | 
		
				| [54] | Lu Q, Arroyo M, Huang R.2009. Elastic bending modulus of monolayer graphene. Journal of Physics D-Applied Physics, 42: 102002. | 
		
				| [55] | Lu Q, Gao W, Huang R.2011. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modelling and Simulation in Materials Science and Engineering, 19: 054006. | 
		
				| [56] | Lu Q, Huang R.2009. Nonlinear mechanics of single-atomic-layer graphene sheets. International Journal of Applied Mechanics, 1: 443-467. | 
		
				| [57] | Lu Z X, Dunn M L.2010. Van der Waals adhesion of graphene membranes. Journal of Applied Physics, 107: 044301. | 
		
				| [58] | Mak K F, Lee C, Hone J, Shan J, Heinz T F.2010. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105: 136805. | 
		
				| [59] | Meo M, Rossi M.2006. Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology, 66: 1597-1605. | 
		
				| [60] | Munoz E, Singh A K, Ribas M A, Penev E S, Yakobson B I.2010. The ultimate diamond slab: Graphane versus graphene. Diamond and Related Materials, 19: 368-373. | 
		
				| [61] | Neek-Amal M, Peeters F M.2010. Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene. Physical Review B, 81: 235437. | 
		
				| [62] | Neek-Amal M, Peeters F M.2010. Nanoindentation of a circular sheet of bilayer graphene. Physical Review B, 81: 235421. | 
		
				| [63] | Ni G X, Yang H Z, Ji W, Baeck S J, Toh C T, Ahn J H, Pereira V M, Ozyilmaz B.2014. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Advanced Materials, 26: 1081-1086. | 
		
				| [64] | Niu T X, Cao G X, Xiong C Y.2016. Fracture behavior of graphene mounted on stretchable substrate. Carbon, 109: 852-859. | 
		
				| [65] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A.2004. Electric field effect in atomically thin carbon films. Science, 306: 666-669. | 
		
				| [66] | Pan D X.2015. Anisotropic bending behaviors and bending induced buckling in singlelayered black phosphorus. Chinese Science Bulletin, 8: 764-770. | 
		
				| [67] | Pei Q X, Zhang Y W, Shenoy V B.2010. Mechanical properties of methyl functionalized graphene: A molecular dynamics study. Nanotechnology, 21: 115709. | 
		
				| [68] | Peng Q, De S.2013. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Physical Chemistry Chemical Physics, 15: 19427-19437. | 
		
				| [69] | Pereira V M, Castro Neto A H.2009. Strain engineering of graphene's electronic structure. Physical Review Letters, 103: 046801. | 
		
				| [70] | Poot M, van der Zant H S J.2008. Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 92: 063111. | 
		
				| [71] | Pruessner M W, King T T, Kelly D P, Grover R, Calhoun L C, Ghodssi R.2003. Mechanical property measurement of InP-based MEMS for optical communications. Sensors and Actuators A-Physical, 105: 190-200. | 
		
				| [72] | Pu J, Li L J, Takenobu T.2014. Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 16: 14996-15006. | 
		
				| [73] | Qiao J S, Kong X H, Hu Z X, Yang F, Ji W.2014. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5: 4475. | 
		
				| [74] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A.2011. Single-layer MoS2 transistors. Nature Nanotechnology, 6: 147-150. | 
		
				| [75] | Rasool H I, Ophus C, Klug W S, Zettl A, Gimzewski J K.2013. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Communications, 4: 2811. | 
		
				| [76] | Reddy C D, Rajendran S, Liew K M.2006. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology, 17: 864-870. | 
		
				| [77] | Ren Y, Cao G.2016. Effect of geometrical defects on the tensile properties of graphene. Carbon, 103: 125-133. | 
		
				| [78] | Ruiz-Vargas C S, Zhuang H L L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J.2011. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Letters, 11: 2259-2263. | 
		
				| [79] | Sanchez-Portal D, Artacho E, Soler J M, Rubio A, Ordejon P.1999. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59: 12678-12688. | 
		
				| [80] | Schwierz F.2010. Graphene transistors. Nature Nanotechnology, 5: 487-496. | 
		
				| [81] | Sha Z D, Quek S S, Pei Q X, Liu Z S, Wang T J, Shenoy V B, Zhang Y W.2014. Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene. Scientific Reports, 4: 5991. | 
		
				| [82] | Sha Z D, Wan Q, Pei Q X, Quek S S, Liu Z S, Zhang Y W, Shenoy V B.2014. On the failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific Reports, 4: 7437. | 
		
				| [83] | Shen Y K, Wu H A.2012. Interlayer shear effect on multilayer graphene subjected to bending. Applied Physics Letters, 100: 101909. | 
		
				| [84] | Song Z G, Artyukhov V I, Wu J, Yakobson B I, Xu Z P.2015. Defect-detriment to graphene strength is concealed by local probe: The topological and geometrical effects. ACS Nano, 9: 401-408. | 
		
				| [85] | Song Z G, Artyukhov V I, Yakobson B I, Xu Z P.2013. Pseudo hall-petch strength reduction in polycrystalline graphene. Nano Letters, 13: 1829-1833. | 
		
				| [86] | Sorkin V, Zhang Y W.2016. Mechanical properties of phosphorene nanotubes: A density functional tight-binding study. Nanotechnology, 27: 395701. | 
		
				| [87] | Suk J W, Piner R D, An J, Ruoff R S.2010. Mechanical properties of mono layer graphene oxide. ACS Nano, 4: 6557-6564. | 
		
				| [88] | Sun H Y, Liu G, Li Q F, Wan X G.2016. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus. Physics Letters A, 380: 2098-2104. | 
		
				| [89] | Tan X J, Wu J, Zhang K W, Peng X Y, Sun L Z, Zhong J X.2013. Nanoindentation models and Young's modulus of monolayer graphene: A molecular dynamics study. Applied Physics Letters, 102: 071908. | 
		
				| [90] | Tao J, Shen W F, Wu S, Liu L, Feng Z H, Wang C, Hu C G, Yao P, Zhang H, Pang W, Duan X X, Liu J, Zhou C W, Zhang D H.2015. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 9: 11362-11370. | 
		
				| [91] | Terdalkar S S, Huang S, Yuan H Y, Rencis J J, Zhu T, Zhang S L.2010. Nanoscale fracture in graphene. Chemical Physics Letters, 494: 218-222. | 
		
				| [92] | Tersoff J.1992. Energies of fullerenes. Physical Review B, 46: 15546-15549. | 
		
				| [93] | Timoshenko S, Woinowsky-Krieger S.1959. Theory of Plates and Shells. New York, McGraw-Hill. | 
		
				| [94] | Traversi F, Guzman-Vazquez F J, Rizzi L G, Russo V, Casari C S, Gomez-Navarro C, Sordan R.2010. Elastic properties of graphene suspended on a polymer substrate by E-beam exposure. New Journal of Physics, 12: 023034. | 
		
				| [95] | Tu Z C, Ou-Yang Z.2002. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Physical Review B, 65: 233407. | 
		
				| [96] | Wang J Y, Li Y, Zhan Z Y, Li T, Zhen L, Xu C Y.2016. Elastic properties of suspended black phosphorus nanosheets. Applied Physics Letters, 108: 013104. | 
		
				| [97] | Wang L Q, Kutana A, Zou X L, Yakobson B I.2015. Electro-mechanical anisotropy of phosphorene. Nanoscale, 7: 9746-9751. | 
		
				| [98] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S.2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7: 699-712. | 
		
				| [99] | Wei Q, Peng X H.2014. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104: 251915. | 
		
				| [100] | Wei X D, Fragneaud B, Marianetti C A, Kysar J W.2009. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Physical Review B, 80: 205407. | 
		
				| [101] | Wei X D, Kysar J W.2012. Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. International Journal of Solids and Structures, 49: 3201-3209. | 
		
				| [102] | Wei Y J, Wang B L, Wu J T, Yang R G, Dunn M L.2013. Bending rigidity and gaussian bending stiffness of single-layered graphene. Nano Letters, 13: 26-30. | 
		
				| [103] | Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M.2012. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nature Materials, 11: 759-763. | 
		
				| [104] | Wong C L, Annamalai M, Wang Z Q, Palaniapan M.2010. Characterization of nanomechanical graphene drum structures. Journal of Micromechanics and Microengineering, 20: 115029. | 
		
				| [105] | Xiao J, Long M Q, Li X M, Xu H, Huang H, Gao Y L.2014. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS2 nanotubes. Scientific Reports, 4: 04327. | 
		
				| [106] | Xiong S, Cao G.2015. Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology, 26: 185705. | 
		
				| [107] | Xiong S, Cao G.2016. Bending response of single layer MoS2. Nanotechnology, 27: 105701. | 
		
				| [108] | Yazyev O V, Louie S G.2010. Electronic transport in polycrystalline graphene. Nature Materials, 9: 806-809. | 
		
				| [109] | Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B.2012. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Physics Letters A, 376: 1166-1170. | 
		
				| [110] | Zhang H Y, Jiang J W.2015. Elastic bending modulus for single-layer black phosphorus. Journal of Physics D-Applied Physics, 48: 455305. | 
		
				| [111] | Zhang R, Koutsos V, Cheung R.2016. Elastic properties of suspended multilayer WSe2. Applied Physics Letters, 108: 042104. | 
		
				| [112] | Zhang Y P, Pan C X.2012. Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diamond and Related Materials, 24: 1-5. | 
		
				| [113] | Zhang Y Y, Pei Q X, Wang C M.2012. Mechanical properties of graphynes under tension: A molecular dynamics study. Applied Physics Letters, 101: 4747719. | 
		
				| [114] | Zhao H, Min K, Aluru N R.2009. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Letters, 9: 3012-3015. | 
		
				| [115] | Zhao J H, Jiang J W, Rabczuk T.2013. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations. Applied Physics Letters, 103: 231913. | 
		
				| [116] | Zheng Y P, Wei N, Fan Z Y, Xu L Q, Huang Z G.2011. Mechanical properties of grafold: A demonstration of strengthened graphene. Nanotechnology, 22: 405701. | 
		
				| [117] | Zhou L, Cao G.2016. Nonlinear anisotropic deformation behavior of a graphene monolayer under uniaxial tension. Physical Chemistry Chemical Physics, 18: 1657-1664. | 
		
				| [118] | Zhou L, Wang Y, Cao G.2013a. Elastic properties of monolayer graphene with different chiralities. Journal of Physics-Condensed Matter, 25: 125302. | 
		
				| [119] | Zhou L, Wang Y, Cao G.2013b. Estimating the elastic properties of few-layer graphene from the free-standing indentation response. Journal of Physics-Condensed Matter, 25: 475301. | 
		
				| [120] | Zhou L, Wang Y, Cao G.2013c. van der Waals effect on the nanoindentation response of free standing monolayer graphene. Carbon, 57: 357-362. | 
		
				| [121] | Zhou L X, Wang Y G, Cao G X.2013d. Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. Journal of Physics-Condensed Matter, 25: 475303. | 
		
				| [122] | Zhou L X, Xue J M, Wang Y G, Cao G X.2013e. Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation. Carbon, 63: 117-124. |